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S1 Accuracy of Maxwell-Garnett theory in predicting the transmission and 

reflection coefficients of photonic time crystal
In this section, we analytically prove the accuracy of various Maxwell-Garnett theories, namely 

equations (4), (6), and (8) in the main text, in predicting the transmission and reflection coefficients of 

photonic time crystal; specifically, we show their equivalence with those in the effective temporal slab.

S1.1 General formulation for space-harmonic fields
In this subsection, we start with the electromagnetic fields of a particular wavevector 𝑘𝑘 (e.g., electric 

displacement 𝐷𝐷𝑘𝑘 and magnetic flux density 𝐵𝐵𝑘𝑘) in the steady state, namely space-harmonic fields [79]. On 

this basis, Fourier theory can be applied to study the space-domain fields as follows

𝐵𝐵(𝑧𝑧, 𝑡𝑡) = � 𝑑𝑑𝑑𝑑 𝐵𝐵𝑘𝑘(𝑡𝑡) ⋅ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
+∞

−∞

𝐷𝐷(𝑧𝑧, 𝑡𝑡) = � 𝑑𝑑𝑑𝑑 𝐷𝐷𝑘𝑘(𝑡𝑡) ⋅ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
+∞

−∞

(S1)

where we only consider a one-dimensional space 𝑟𝑟 for conceptual brevity.

For the photonic time crystal with the structural setup in Fig. 1 in the main text, the permittivity and 

permeability in the whole space-time domain are given by

𝜀𝜀(𝑡𝑡) = 𝜀𝜀𝑗𝑗,   𝜇𝜇(𝑡𝑡) = 𝜇𝜇𝑗𝑗,   region 𝑗𝑗,  1 ≤ 𝑗𝑗 ≤ 𝑁𝑁 + 1 (S2)

where 𝑁𝑁  is the total temporal interface number; 𝜀𝜀MG and 𝜇𝜇MG are the homogenized effective parameters. 

The field expressions for 𝐷𝐷𝑘𝑘 and 𝐵𝐵𝑘𝑘 (the subscript 𝑘𝑘 is neglected for concise expression) are assumed as 

follows

𝐵𝐵(𝑡𝑡) =

⎩⎪
⎨
⎪⎧

𝑎𝑎1
+𝑒𝑒−𝑖𝑖𝜔𝜔𝑗𝑗(𝑡𝑡−𝑡𝑡1)  𝑡𝑡 ≤ 𝑡𝑡1 (region 1)

𝑎𝑎𝑗𝑗
+𝑒𝑒−𝑖𝑖𝜔𝜔𝑗𝑗�𝑡𝑡−𝑡𝑡𝑗𝑗−1� + 𝑎𝑎𝑗𝑗

−𝑒𝑒+𝑖𝑖𝜔𝜔𝑗𝑗�𝑡𝑡−𝑡𝑡𝑗𝑗−1�  𝑡𝑡𝑗𝑗−1 < 𝑡𝑡 ≤ 𝑡𝑡𝑗𝑗 (region 𝑗𝑗)
𝑎𝑎𝑁𝑁+1

+ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑗𝑗(𝑡𝑡−𝑡𝑡𝑁𝑁 ) + 𝑎𝑎𝑁𝑁+1
− 𝑒𝑒+𝑖𝑖𝜔𝜔𝑗𝑗(𝑡𝑡−𝑡𝑡𝑁𝑁 )  𝑡𝑡𝑁𝑁 < 𝑡𝑡 (region 𝑁𝑁 + 1)

𝐷𝐷(𝑡𝑡) =

⎩
⎪
⎪
⎨
⎪
⎪
⎧ − 1

𝜂𝜂1
𝑎𝑎1

+𝑒𝑒−𝑖𝑖𝜔𝜔𝑗𝑗(𝑡𝑡−𝑡𝑡1)  𝑡𝑡 ≤ 𝑡𝑡1 

− 1
𝜂𝜂𝑗𝑗

𝑎𝑎𝑗𝑗
+𝑒𝑒−𝑖𝑖𝜔𝜔𝑗𝑗�𝑡𝑡−𝑡𝑡𝑗𝑗−1� + 1

𝜂𝜂𝑗𝑗
𝑎𝑎𝑗𝑗

−𝑒𝑒+𝑖𝑖𝜔𝜔𝑗𝑗�𝑡𝑡−𝑡𝑡𝑗𝑗−1�  𝑡𝑡𝑗𝑗−1 < 𝑡𝑡 ≤ 𝑡𝑡𝑗𝑗 

− 1
𝜂𝜂𝑁𝑁+1

𝑎𝑎𝑁𝑁+1
+ 𝑒𝑒−𝑖𝑖𝜔𝜔𝑗𝑗(𝑡𝑡−𝑡𝑡𝑁𝑁 ) + 1

𝜂𝜂𝑁𝑁+1
𝑎𝑎𝑁𝑁+1

− 𝑒𝑒+𝑖𝑖𝜔𝜔𝑗𝑗(𝑡𝑡−𝑡𝑡𝑁𝑁)  𝑡𝑡𝑁𝑁 < 𝑡𝑡 

(S3)

where 𝑎𝑎𝑗𝑗
+ (𝑎𝑎𝑗𝑗

−) is the amplitude of the forward (backward) propagating wave components, and 𝜂𝜂𝑗𝑗  and  𝜔𝜔𝑗𝑗  

are the wave impedance and wave frequency given by

𝜂𝜂𝑗𝑗 =
𝜇𝜇𝑗𝑗𝜔𝜔𝑗𝑗

𝑘𝑘
= �𝜇𝜇𝑗𝑗 𝜀𝜀𝑗𝑗⁄  ,    𝜔𝜔𝑗𝑗 = 𝑘𝑘 �𝜇𝜇𝑗𝑗𝜀𝜀𝑗𝑗�  ,    ∀𝑗𝑗 (S4)
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S1.2 General formulation for the temporal characteristic matrix

In this subsection, we derive the characteristic matrix 𝑀𝑀𝑗𝑗  for a single temporal slab extending from 

𝑡𝑡 = 𝑡𝑡𝑗𝑗−1 to 𝑡𝑡 = 𝑡𝑡𝑗𝑗 , which relates the field values at its two temporal interfaces, namely

�
𝐵𝐵𝑗𝑗�𝑡𝑡𝑗𝑗�
𝐷𝐷𝑗𝑗�𝑡𝑡𝑗𝑗�� = 𝑀𝑀𝑗𝑗 �

𝐵𝐵𝑗𝑗−1�𝑡𝑡𝑗𝑗−1�
𝐷𝐷𝑗𝑗−1�𝑡𝑡𝑗𝑗−1�� (S5)

Equation (S5) is the generalization of Born’s formulation for a single spatial slab [80] into the temporal 

case. The solution to 𝑀𝑀𝑗𝑗  can be obtained by enforcing temporal boundary condition and simple geometric 

optics. One the one hand, the continuity of the electric displacement 𝐷𝐷 and magnetic flux density 𝐵𝐵 before 

and after the temporal interface should be guaranteed, namely

�
𝐵𝐵𝑗𝑗−1�𝑡𝑡𝑗𝑗−1�
𝐷𝐷𝑗𝑗−1�𝑡𝑡𝑗𝑗−1�� = �

𝐵𝐵𝑗𝑗�𝑡𝑡𝑗𝑗−1�
𝐷𝐷𝑗𝑗�𝑡𝑡𝑗𝑗−1��,   ∀𝑗𝑗 ∈ [2, 𝑁𝑁 + 1] (S6)

Also note that the wavevector 𝑘𝑘 is a conservable quantity due to the boundary condition.

On the other hand, from the perspective of geometric optics by following equation (S3), one has 

𝐵𝐵𝑗𝑗�𝑡𝑡𝑗𝑗� = 𝑒𝑒−𝑖𝑖𝜔𝜔𝑗𝑗𝜏𝜏𝑗𝑗𝑎𝑎𝑗𝑗
+ + 𝑒𝑒+𝑖𝑖𝜔𝜔𝑗𝑗𝜏𝜏𝑗𝑗𝑎𝑎𝑗𝑗

−

𝐷𝐷𝑗𝑗�𝑡𝑡𝑗𝑗� = − 1
𝜂𝜂𝑗𝑗

𝑒𝑒−𝑖𝑖𝜔𝜔𝑗𝑗𝜏𝜏𝑗𝑗 𝑎𝑎𝑗𝑗
+ + 1

𝜂𝜂𝑗𝑗
𝑒𝑒+𝑖𝑖𝜔𝜔𝑗𝑗𝜏𝜏𝑗𝑗 𝑎𝑎𝑗𝑗

−

𝜏𝜏𝑗𝑗 = 𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑗𝑗−1

(S7)

where 𝜏𝜏𝑗𝑗  is the temporal duration of the slab in region 𝑗𝑗. The amplitudes 𝑎𝑎𝑗𝑗
+ and 𝑎𝑎𝑗𝑗

− can be obtained by 

setting 𝑡𝑡 = 𝑡𝑡𝑗𝑗−1 in equation (S3), and are related to 𝐵𝐵(𝑡𝑡𝑗𝑗) and 𝐷𝐷(𝑡𝑡𝑗𝑗−1) by

�
𝑎𝑎𝑗𝑗

+

𝑎𝑎𝑗𝑗
−� = �

1 2⁄ − 𝜂𝜂𝑗𝑗 2⁄
1 2⁄ 𝜂𝜂𝑗𝑗 2⁄ � �

𝐵𝐵𝑗𝑗�𝑡𝑡𝑗𝑗−1�
𝐷𝐷𝑗𝑗�𝑡𝑡𝑗𝑗−1�� (S8)

One can also write equation (S8) equivalently as

�
𝐵𝐵𝑗𝑗�𝑡𝑡𝑗𝑗−1�
𝐷𝐷𝑗𝑗�𝑡𝑡𝑗𝑗−1�� = �

1 1
− 1 𝜂𝜂𝑗𝑗⁄ 1 𝜂𝜂𝑗𝑗⁄ � �

𝑎𝑎𝑗𝑗
+

𝑎𝑎𝑗𝑗
−� (S9)

By substituting equation (S8) into equation (S7), and after some algebra, one has

�
𝐵𝐵𝑗𝑗�𝑡𝑡𝑗𝑗�
𝐷𝐷𝑗𝑗�𝑡𝑡𝑗𝑗�� = �

cos(𝜔𝜔𝑗𝑗𝜏𝜏𝑗𝑗) 𝑖𝑖𝜂𝜂𝑗𝑗 sin�𝜔𝜔𝑗𝑗𝜏𝜏𝑗𝑗�
𝑖𝑖 sin�𝜔𝜔𝑗𝑗𝜏𝜏𝑗𝑗� 𝜂𝜂𝑗𝑗� cos(𝜔𝜔𝑗𝑗𝜏𝜏𝑗𝑗) � �

𝐵𝐵𝑗𝑗�𝑡𝑡𝑗𝑗−1�
𝐷𝐷𝑗𝑗�𝑡𝑡𝑗𝑗−1��,    ∀𝑗𝑗 ∈ [2, 𝑁𝑁 + 1] (S10)

By combining formulas (S6) and (S10), one has the expression for temporal characteristic matrix as follows

𝑀𝑀𝑗𝑗 = �
cos(𝜔𝜔𝑗𝑗𝜏𝜏𝑗𝑗) 𝑖𝑖𝜂𝜂𝑗𝑗 sin�𝜔𝜔𝑗𝑗𝜏𝜏𝑗𝑗�

𝑖𝑖 sin�𝜔𝜔𝑗𝑗𝜏𝜏𝑗𝑗� 𝜂𝜂𝑗𝑗� cos(𝜔𝜔𝑗𝑗𝜏𝜏𝑗𝑗) � (S11)
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S1.3 Temporal characteristic matrix for the photonic time crystal and the homogenized 

temporal slab

In this subsection, we obtain the temporal characteristic matrix 𝑀𝑀PTC for the photonic time crystal and 

the homogenized temporal slab. For the photonic time crystal, we start with its unit-cell characteristic matrix 

as follows

𝑀𝑀PTC,unit =
�

𝑀𝑀PTC,unit,11 𝑀𝑀PTC,unit,12

𝑀𝑀PTC,unit,21 𝑀𝑀PTC,unit,22
�

= 𝑀𝑀I𝑀𝑀II = �
cos(𝜔𝜔I𝜏𝜏I) 𝑖𝑖𝜂𝜂I sin(𝜔𝜔I𝜏𝜏I)

𝑖𝑖 sin(𝜔𝜔I𝜏𝜏I) 𝜂𝜂I⁄ cos(𝜔𝜔I𝜏𝜏I) � �
cos(𝜔𝜔II𝜏𝜏II) 𝑖𝑖𝜂𝜂II sin(𝜔𝜔II𝜏𝜏II)

𝑖𝑖 sin(𝜔𝜔II𝜏𝜏II) 𝜂𝜂II⁄ cos(𝜔𝜔II𝜏𝜏II) �

(S12)

After some algebra, one has

𝑀𝑀PTC,unit,11 = cos(𝜔𝜔I𝜏𝜏I) cos(𝜔𝜔II𝜏𝜏II) − sin(𝜔𝜔I𝜏𝜏I) sin(𝜔𝜔II𝜏𝜏II) 𝜂𝜂I 𝜂𝜂II⁄

𝑀𝑀PTC,unit,12 = 𝑖𝑖𝜂𝜂II cos(𝜔𝜔I𝜏𝜏I) sin(𝜔𝜔II𝜏𝜏II) + 𝑖𝑖𝜂𝜂I sin(𝜔𝜔I𝜏𝜏I) cos(𝜔𝜔II𝜏𝜏II)

𝑀𝑀PTC,unit,21 = 𝑖𝑖 𝜂𝜂I⁄ sin(𝜔𝜔I𝜏𝜏I) cos(𝜔𝜔II𝜏𝜏II) + 𝑖𝑖 𝜂𝜂II⁄ cos(𝜔𝜔I𝜏𝜏I) sin(𝜔𝜔II𝜏𝜏II)

𝑀𝑀PTC,unit,22 = cos(𝜔𝜔I𝜏𝜏I) cos(𝜔𝜔II𝜏𝜏II) − sin(𝜔𝜔I𝜏𝜏I) sin(𝜔𝜔II𝜏𝜏II) 𝜂𝜂II 𝜂𝜂I⁄

(S13)

Note that 𝑀𝑀PTC,unit is a unimodular matrix, then, with some knowledge from the matrix theory [80], one 

has

𝑀𝑀PTC = 𝑀𝑀PTC,unit
𝑁𝑁unit

=
⎣
⎢
⎢
⎡𝑀𝑀PTC,unit,11𝑈𝑈𝑁𝑁unit−1(𝑎𝑎) − 𝑈𝑈𝑁𝑁unit−2(𝑎𝑎) 𝑀𝑀PTC,unit,12𝑈𝑈𝑁𝑁unit−1(𝑎𝑎)

𝑀𝑀PTC,unit,21𝑈𝑈𝑁𝑁unit−1(𝑎𝑎) 𝑀𝑀PTC,unit,22𝑈𝑈𝑁𝑁unit−1(𝑎𝑎) − 𝑈𝑈𝑁𝑁unit−2(𝑎𝑎)⎦
⎥
⎥
⎤

𝑎𝑎 =
𝑀𝑀PTC,unit,11 + 𝑀𝑀PTC,unit,21

2
= cos(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II)

(S14)

where 𝑈𝑈𝑁𝑁unit
(cos 𝑥𝑥) = sin�(𝑁𝑁unit + 1)𝑥𝑥� / sin 𝑥𝑥 represents the Chebyshev polynomials of the second kind.

For the homogenized temporal slab, it is easy to write its characteristic matrix as follows based on the 

derivation in last subsection.

𝑀𝑀MG = �
cos(𝜔𝜔MG𝜏𝜏MG) 𝑖𝑖𝜂𝜂MG sin(𝜔𝜔MG𝜏𝜏MG)

𝑖𝑖 sin(𝜔𝜔MG𝜏𝜏MG) 𝜂𝜂MG⁄ cos(𝜔𝜔MG𝜏𝜏MG) �
𝜂𝜂MG = √𝜇𝜇MG 𝜀𝜀MG⁄  ,   𝜔𝜔MG = 𝑘𝑘 √𝜇𝜇MG𝜀𝜀MG⁄  ,   𝜏𝜏MG = (𝜏𝜏I + 𝜏𝜏II) ⋅ 𝑁𝑁unit

(S15)

where 𝜏𝜏MG , 𝜔𝜔MG , 𝜂𝜂MG  are the effective temporal duration, angular frequency and impedance of the 

temporal slab obtained via the Maxwell-Garnett theory.
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S1.4 Transmission and reflection coefficients, and the energy transmittivity and reflectivity

In this subsection, we give a general derivation for the transmission and reflection coefficients 𝑡𝑡 � and 𝑟𝑟 � , 

and the energy transmittivity and reflectivity for the photonic time crystal and the homogenized temporal 

slab.

For the photonic time crystal, 𝑡𝑡�PTC and 𝑟𝑟�PTC are defined as

 𝑡𝑡�PTC = 𝑎𝑎𝑁𝑁+1
+ 𝑎𝑎1

+⁄
 𝑟𝑟�PTC = 𝑎𝑎𝑁𝑁+1

− 𝑎𝑎1
+⁄

(S16)

Note here the transmission and reflection coefficients are defined with expect to the magnetic flux density 

𝐵𝐵. By the definition of the characteristic matrixes for equation (S5) and by combing equations (S8-S9), one 

has

�
1 1

− 1 𝜂𝜂𝑁𝑁+1⁄ 1 𝜂𝜂𝑁𝑁+1⁄ � �
𝑎𝑎𝑁𝑁+1

+

𝑎𝑎𝑁𝑁+1
− � = 𝑀𝑀PTC �

1 1
− 1 𝜂𝜂1⁄ 1 𝜂𝜂1⁄ � �

𝑎𝑎1
+

𝑎𝑎1
−� (S17)

After some calculation, one has the scattering matrix 𝑆𝑆PTC for the photonic time crystal, namely

�
𝑎𝑎𝑁𝑁+1

+

𝑎𝑎𝑁𝑁+1
− � = 𝑆𝑆PTC �

𝑎𝑎1
+

𝑎𝑎1
−�

𝑆𝑆PTC = �
1 2⁄ − 𝜂𝜂𝑁𝑁+1 2⁄
1 2⁄ 𝜂𝜂𝑁𝑁+1 2⁄ � 𝑀𝑀PTC �

1 1
− 1 𝜂𝜂1⁄ 1 𝜂𝜂1⁄ �

(S18)

Using the fact that 𝑎𝑎1
− = 0 for incident light, then one has

 𝑡𝑡�PTC = 𝑆𝑆PTC,11 = 1
2 �𝑀𝑀PTC,11 − 𝑀𝑀PTC,12 𝜂𝜂1� � −

𝜂𝜂𝑁𝑁+1

2 �𝑀𝑀PTC,21 − 𝑀𝑀PTC,22 𝜂𝜂1� �

 𝑟𝑟�PTC = 𝑆𝑆PTC,21 = 1
2 �𝑀𝑀PTC,11 − 𝑀𝑀PTC,12 𝜂𝜂1� � +

𝜂𝜂𝑁𝑁+1

2 �𝑀𝑀PTC,21 − 𝑀𝑀PTC,22 𝜂𝜂1� �
(S19)

By following the same procedure, one has the transmission and reflection coefficients (i.e.  𝑡𝑡�MG and  𝑟𝑟�MG) 

for the homogenized temporal slab, namely

 𝑡𝑡�MG = 1
2 �𝑀𝑀MG,11 − 𝑀𝑀MG,12 𝜂𝜂1� � −

𝜂𝜂𝑁𝑁+1

2 �𝑀𝑀MG,21 − 𝑀𝑀MG,22 𝜂𝜂1� �

 𝑟𝑟�MG = 1
2 �𝑀𝑀MG,11 − 𝑀𝑀MG,12 𝜂𝜂1� � +

𝜂𝜂𝑁𝑁+1

2 �𝑀𝑀MG,21 − 𝑀𝑀MG,22 𝜂𝜂1� �
(S20)

On this basis, we obtain the energy transmittivity  𝑇𝑇  �  and  𝑅𝑅 � reflectivity. By using the complex 

Poynting’s theorem, the complex Poynting’s vector for the incident wave is given by

𝑆𝑆𝑖𝑖 = 1
2

𝑅𝑅𝑅𝑅�𝐸𝐸1(𝑡𝑡) × 𝐻𝐻1
∗(𝑡𝑡)� = 𝑘̂𝑘 �𝑎𝑎1

+
�
2

2𝜇𝜇1√𝜀𝜀1𝜇𝜇1
(S21)

where 𝑘̂𝑘 is the unit vector in the direction of the wavevector 𝑘𝑘. Similarly, one has the complex Poynting’s 

vector for the transmitted and reflected wave as follows
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𝑆𝑆𝑡𝑡 = 𝑘̂𝑘 �𝑎𝑎𝑁𝑁+1
− �

2

2𝜇𝜇𝑁𝑁+1√𝜀𝜀𝑁𝑁+1𝜇𝜇𝑁𝑁+1

𝑆𝑆𝑟𝑟 = 𝑘̂𝑘 �𝑎𝑎𝑁𝑁+1
− �

2

2𝜇𝜇𝑁𝑁+1√𝜀𝜀𝑁𝑁+1𝜇𝜇𝑁𝑁+1

(S22)

Therefore, the energy transmittivity  𝑇𝑇  �  and reflectivity 𝑅𝑅 � are related to the transmission and reflection 

coefficients ( 𝑡𝑡 � and  𝑟𝑟 � ) by

 𝑇𝑇  � =
𝜇𝜇1√𝜀𝜀1𝜇𝜇1

𝜇𝜇𝑁𝑁+1√𝜀𝜀𝑁𝑁+1𝜇𝜇𝑁𝑁+1
� 𝑡𝑡 � �

2

𝑅𝑅 � =
𝜇𝜇1√𝜀𝜀1𝜇𝜇1

𝜇𝜇𝑁𝑁+1√𝜀𝜀𝑁𝑁+1𝜇𝜇𝑁𝑁+1
| 𝑟𝑟 � |2

(S23)

S1.5 Equivalence of the characteristic matrixes between the photonic time crystal and the 

effective temporal slab

Finally in this subsection, we prove the validity of various Maxwell-Garnett theory, by showing the 

equivalence of the transmission and reflection coefficients, between the photonic time crystals and their 

homogenized counterparts, namely

 𝑡𝑡�PTC =  𝑡𝑡�MG and  𝑟𝑟�PTC =  𝑟𝑟�MG (S24)

In light of equations (S19) and (S20), it is sufficient to prove equation (S24), if we can obtain

𝑀𝑀PTC = 𝑀𝑀MG (S25)

where 𝑀𝑀PTC  and 𝑀𝑀MG  are the characteristic matrixes for the photonic time crystal and the effective 

temporal slab, as respectively determined in equation (S14) and (S15). To satisfy equation (S25), one can 

reasonably expect a stricter condition in the periodic system, namely, the equivalence between the 

characteristic matrix 𝑀𝑀PTC,unit  for each unit cell of the photonic time crystal and that (𝑀𝑀MG,unit) for the 

homogenized temporal slab of the same temporal duration, as follows

𝑀𝑀PTC,unit = 𝑀𝑀MG,unit (S26)

𝑀𝑀PTC,unit,11 = cos(𝜔𝜔I𝜏𝜏I) cos(𝜔𝜔II𝜏𝜏II) − sin(𝜔𝜔I𝜏𝜏I) sin(𝜔𝜔II𝜏𝜏II) 𝜂𝜂I 𝜂𝜂II⁄

𝑀𝑀PTC,unit,12 = 𝑖𝑖𝜂𝜂II cos(𝜔𝜔I𝜏𝜏I) sin(𝜔𝜔II𝜏𝜏II) + 𝑖𝑖𝜂𝜂I sin(𝜔𝜔I𝜏𝜏I) cos(𝜔𝜔II𝜏𝜏II)

𝑀𝑀PTC,unit,21 = 𝑖𝑖 𝜂𝜂I⁄ sin(𝜔𝜔I𝜏𝜏I) cos(𝜔𝜔II𝜏𝜏II) + 𝑖𝑖 𝜂𝜂II⁄ cos(𝜔𝜔I𝜏𝜏I) sin(𝜔𝜔II𝜏𝜏II)

𝑀𝑀PTC,unit,22 = cos(𝜔𝜔I𝜏𝜏I) cos(𝜔𝜔II𝜏𝜏II) − sin(𝜔𝜔I𝜏𝜏I) sin(𝜔𝜔II𝜏𝜏II) 𝜂𝜂II 𝜂𝜂I⁄

(S27)
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𝑀𝑀MG,unit = �
cos�𝜔𝜔MG(𝜏𝜏I + 𝜏𝜏II)� 𝑖𝑖𝜂𝜂MG sin�𝜔𝜔MG(𝜏𝜏I + 𝜏𝜏II)�

𝑖𝑖 sin�𝜔𝜔MG(𝜏𝜏I + 𝜏𝜏II)� 𝜂𝜂MG⁄ cos�𝜔𝜔MG(𝜏𝜏I + 𝜏𝜏II)� � (S28)

Below, we show how equation (S26) is fulfilled under the condition of various Maxwell-Garnett theories.

For conventional type 1 of Maxwell-Garnett theory within the long-wavelength limit [81], as derived 

in equation (4) in the main text, namely
𝜏𝜏I + 𝜏𝜏II

𝜀𝜀MG
=

𝜏𝜏I
𝜀𝜀I

+
𝜏𝜏II
𝜀𝜀II

𝜏𝜏I + 𝜏𝜏II
𝜇𝜇MG

=
𝜏𝜏I
𝜇𝜇I

+
𝜏𝜏II
𝜇𝜇II

 , if within the long-wavelength limit (including 𝜔𝜔MG(𝜏𝜏I + 𝜏𝜏II) → 0) (S29)

By using equation (S29), one can simplify 𝜂𝜂MG and 𝜔𝜔MG as

𝜂𝜂MG = �
𝜇𝜇MG
𝜀𝜀MG

=

⎷

��
��
�𝜏𝜏I

𝜀𝜀I
+ 𝜏𝜏II

𝜀𝜀II
𝜏𝜏I
𝜇𝜇I

+ 𝜏𝜏II
𝜇𝜇II

𝜔𝜔MG = 𝑘𝑘
√𝜇𝜇MG𝜀𝜀MG

= 𝑘𝑘
𝜏𝜏I + 𝜏𝜏II ��

𝜏𝜏I
𝜀𝜀I

+
𝜏𝜏II
𝜀𝜀II� �

𝜏𝜏I
𝜇𝜇I

+
𝜏𝜏II
𝜇𝜇II�

(S30)

Moreover, within the long-wavelength limit, the characteristic matrixes are simplified to

𝑀𝑀PTC,unit = �
1 𝑖𝑖𝜂𝜂II𝜔𝜔II𝜏𝜏II + 𝑖𝑖𝜂𝜂I𝜔𝜔I𝜏𝜏I

𝑖𝑖𝜔𝜔I𝜏𝜏I 𝜂𝜂I⁄ + 𝑖𝑖𝜔𝜔II𝜏𝜏II 𝜂𝜂II⁄ 1 � (S31)

and

𝑀𝑀MG,unit = �
1 𝑖𝑖𝜂𝜂MG𝜔𝜔MG(𝜏𝜏I + 𝜏𝜏II)

𝑖𝑖𝜔𝜔MG(𝜏𝜏I + 𝜏𝜏II) 𝜂𝜂MG⁄ 1 � (S32)

where the Taylor expansion of sine and cosine functions are used. Then, to prove 𝑀𝑀PTC,unit = 𝑀𝑀MG,unit  (or 

more accurately speaking 𝑀𝑀PTC,unit ≈ 𝑀𝑀MG,unit  in this case), reduces to proving

�
𝜂𝜂MG𝜔𝜔MG(𝜏𝜏I + 𝜏𝜏II) = 𝜂𝜂II𝜔𝜔II𝜏𝜏II + 𝜂𝜂I𝜔𝜔I𝜏𝜏I

𝜔𝜔MG(𝜏𝜏I + 𝜏𝜏II) 𝜂𝜂MG⁄ = 𝜔𝜔I𝜏𝜏I 𝜂𝜂I⁄ + 𝜔𝜔II𝜏𝜏II 𝜂𝜂II⁄ (S33)

At this point, equation (S33) can be easily derived through simple algebra based on equation (S30). The 

detailed mathematics are omitted here.

For anomalous type 2 of Maxwell-Garnett theory via impedance matching [82], as governed by 

equation (6) in the main text, namely
𝑇𝑇PTC
𝜀𝜀MG

=
𝜏𝜏I
𝜀𝜀I

+
𝜏𝜏II
𝜀𝜀II

𝑇𝑇PTC
𝜇𝜇MG

=
𝜏𝜏I
𝜇𝜇I

+
𝜏𝜏II
𝜇𝜇II

   , if 𝜂𝜂I = 𝜂𝜂II, for ∀ 𝜔𝜔MG𝑇𝑇PTC/2𝜋𝜋 = 𝑇𝑇PTC/𝑇𝑇MG (S34)

Based on equation (S34), one has
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𝜂𝜂MG = 𝜂𝜂I = 𝜂𝜂II

𝜔𝜔MG = 𝑘𝑘
𝜏𝜏I + 𝜏𝜏II �

𝜏𝜏I

√𝜇𝜇I𝜀𝜀I
+

𝜏𝜏II

√𝜇𝜇II𝜀𝜀II�
=

𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II
𝜏𝜏I + 𝜏𝜏II

(S35)

Moreover, based on the impedance matching condition, namely 𝜂𝜂I = 𝜂𝜂II , equations (S27) and (S28) 

respectively reduce to

𝑀𝑀PTC,unit = �
cos(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) 𝑖𝑖𝜂𝜂Isin(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II)

𝑖𝑖sin(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) /𝜂𝜂II cos(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) � (S36)

and

𝑀𝑀MG,unit = �
cos�𝜔𝜔MG(𝜏𝜏I + 𝜏𝜏II)� 𝑖𝑖𝜂𝜂MG sin�𝜔𝜔MG(𝜏𝜏I + 𝜏𝜏II)�

𝑖𝑖 sin�𝜔𝜔MG(𝜏𝜏I + 𝜏𝜏II)� 𝜂𝜂MG⁄ cos�𝜔𝜔MG(𝜏𝜏I + 𝜏𝜏II)� � (S37)

At this point, the equivalence between equations (S36) and (S37) is clear by substituting equation (S35) 

into them.

For anomalous type 3 of Maxwell-Garnett theory via temporal Fabry-Pérot, as governed by equation 

(8) in the main text, namely
𝑇𝑇PTC
𝜀𝜀MG

=
𝜏𝜏I

𝜀𝜀I𝜂𝜂I/𝜂𝜂II
+

𝜏𝜏II
𝜀𝜀II

𝑇𝑇PTC
𝜇𝜇MG

=
𝜏𝜏I

𝜇𝜇I𝜂𝜂II/𝜂𝜂I
+

𝜏𝜏II
𝜇𝜇II

   , if sin(𝜔𝜔I𝜏𝜏I) = 0, for 𝜔𝜔MG𝑇𝑇PTC/2𝜋𝜋 = 𝑇𝑇PTC/𝑇𝑇MG > 1/2 (S38)

Based on equation (S38), one has
𝜂𝜂MG = 𝜂𝜂II

𝜔𝜔MG = 𝑘𝑘
𝜏𝜏I + 𝜏𝜏II �

𝜏𝜏I

√𝜇𝜇I𝜀𝜀I
+

𝜏𝜏II

√𝜇𝜇II𝜀𝜀II�
=

𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II
𝜏𝜏I + 𝜏𝜏II

(S39)

Furthermore, based on the temporal Fabry-Pérot resonance condition, e.g. sin(𝜔𝜔I𝜏𝜏I) = 0, equation (S27) 

reduces to

𝑀𝑀PTC,unit = �
(−1)𝑚𝑚 cos(𝜔𝜔II𝜏𝜏II) 𝑖𝑖𝜂𝜂II(−1)𝑚𝑚 sin(𝜔𝜔II𝜏𝜏II)

𝑖𝑖 𝜂𝜂II⁄ (−1)𝑚𝑚 sin(𝜔𝜔II𝜏𝜏II) (−1)𝑚𝑚 cos(𝜔𝜔II𝜏𝜏II) �

= �
cos(𝑚𝑚𝑚𝑚 + 𝜔𝜔II𝜏𝜏II) 𝑖𝑖𝜂𝜂IIsin(𝑚𝑚𝑚𝑚 + 𝜔𝜔II𝜏𝜏II)

𝑖𝑖sin(𝑚𝑚𝑚𝑚 + 𝜔𝜔II𝜏𝜏II) /𝜂𝜂II cos(𝑚𝑚𝑚𝑚 + 𝜔𝜔II𝜏𝜏II) �
(S40)

where the identities of cos(𝜔𝜔I𝜏𝜏I) = (−1)𝑚𝑚  and (−1)𝑚𝑚 cos(𝜔𝜔II𝜏𝜏II) = cos(𝑚𝑚𝑚𝑚 + 𝜔𝜔II𝜏𝜏II)  are used. By use the 

Fabry- Pérot resonance condition again, namely 𝜔𝜔I𝜏𝜏I = 𝑚𝑚𝑚𝑚, one has

𝑀𝑀PTC,unit = �
cos(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) 𝑖𝑖𝜂𝜂IIsin(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II)

𝑖𝑖sin(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) /𝜂𝜂II cos(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) � (S41)

Similarly, at this point, the equivalence between the characteristic matrix for the unit cell of the photonic 

time crystal in equation (S40), and that of the homogenized temporal slab of the same thickness can be 

easily obtained, based on equation (S39).



S9

From all above, we have prove the equivalence between the transmission coefficient 𝑡𝑡P̃TC  (or the 

reflection coefficient 𝑟𝑟P̃TC) for a temporally finitely-thick photonic time crystal and that (𝑡𝑡M̃G or 𝑟𝑟M̃G) for 

the effective temporal slab, namely 𝑡𝑡P̃TC = 𝑡𝑡M̃G  (or 𝑟𝑟P̃TC = 𝑟𝑟M̃G ), in a strict manner, by showing the 

equivalence between their character matrixes.

S2 Spatiotemporal evolution of various wave packets interacting with photonic 

time crystals beyond the long-wavelength limit
In this section we give the rigorous expressions for the field distribution of various space-time wave 

packet interacting with the photonic time crystal beyond the long-wavelength limit. The incident wave 

packet takes the form

�
𝑎𝑎1

+

𝑎𝑎1
−� = �

𝑎𝑎(𝑘𝑘)
0 � (S42)

where 𝑎𝑎(𝑘𝑘) is the wavevector-dependent amplitude of the space-harmonic wave packet. For example, for 

the continuous Gaussian-type waveform, 𝑎𝑎(𝑘𝑘) = 𝑒𝑒−𝑘𝑘2/2𝜎𝜎𝑘𝑘
2
. On this basis, one can obtain the field amplitude 

in region 𝑗𝑗, for ∀𝑗𝑗 ∈ [2, 𝑁𝑁 + 1].

�
𝑎𝑎𝑗𝑗

+

𝑎𝑎𝑗𝑗
−� = �

1 2⁄ − 𝜂𝜂𝑗𝑗 2⁄
1 2⁄ 𝜂𝜂𝑗𝑗 2⁄ � ⋅

� � 𝑀𝑀𝑛𝑛

1

𝑛𝑛=𝑗𝑗−1 �
⋅ �

1 1
− 1 𝜂𝜂1⁄ 1 𝜂𝜂1⁄ � �

𝑎𝑎(𝑘𝑘)
0 � ,   ∀𝑗𝑗 ∈ [2, 𝑁𝑁 + 1] (S43)

By substituting the values of 𝑎𝑎𝑗𝑗
+ and 𝑎𝑎𝑗𝑗

− into equation (S3), all the spatiotemporal evolution of the wave 

packet can be obtained.

S3 More discussion on anomalous Maxwell-Garnett theory for photonic time 

crystals.

S3.1 Supplementary case of photonic time crystals with both constituents satisfying Fabry-

Pérot resonance condition
In this subsection, we compare results for cases where one or both constituents satisfy the Fabry-Pérot 

resonance condition.

Case 1: When only one constituent of photonic time crystal satisfies the Fabry-Pérot resonance 

condition, we have

sin(𝜔𝜔I𝜏𝜏I) = sin(𝑚𝑚𝑚𝑚) = 0,   𝑏𝑏𝑏𝑏𝑏𝑏 sin(𝜔𝜔II𝜏𝜏II) ≠ 0 (S44)
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where 𝑚𝑚 ∈ ℕ. Generally, the corresponding characteristic matrix of each constituent X (X = I or II) is 𝑀𝑀X =

�
cos(𝜔𝜔X𝜏𝜏X) 𝑖𝑖𝜂𝜂I sin(𝜔𝜔X𝜏𝜏X)

𝑖𝑖 sin(𝜔𝜔X𝜏𝜏X) 𝜂𝜂X⁄ cos(𝜔𝜔X𝜏𝜏X) �. By using equation (S44), we have the characteristic matrix 𝑀𝑀PTC,unit  of 

the unit cell of the photonic time crystal, namely

𝑀𝑀PTC,unit = 𝑀𝑀I𝑀𝑀II = �
cos(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) 𝑖𝑖𝜂𝜂II sin(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II)

𝑖𝑖 sin(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) 𝜂𝜂II⁄ cos(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) � (S45)

Meanwhile, the characteristic matrix 𝑀𝑀MG of the homogenized slab with the same time duration is given 

by

𝑀𝑀MG = �
cos(𝜔𝜔MG𝑇𝑇PTC) 𝑖𝑖𝜂𝜂MG sin(𝜔𝜔MG𝑇𝑇PTC)

𝑖𝑖 sin(𝜔𝜔MG𝑇𝑇PTC) 𝜂𝜂MG⁄ cos(𝜔𝜔MG𝑇𝑇PTC) � (S46)

When the Maxwell-Garnett effective medium theory holds, we can enforce the equivalence of the 

characteristic matrices above, namely 𝑀𝑀PTC,unit = 𝑀𝑀MG, or

�
cos(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) 𝑖𝑖𝜂𝜂II sin(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II)

𝑖𝑖 sin(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) 𝜂𝜂II⁄ cos(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) � = �
cos(𝜔𝜔MG𝑇𝑇PTC) 𝑖𝑖𝜂𝜂MG sin(𝜔𝜔MG𝑇𝑇PTC)

𝑖𝑖 sin(𝜔𝜔MG𝑇𝑇PTC) 𝜂𝜂MG⁄ cos(𝜔𝜔MG𝑇𝑇PTC) � (S47)

From the equivalence of diagonal terms and the equivalence of off-diagonal terms in equation (S47), we 

have

cos(𝜔𝜔MG𝑇𝑇PTC) = cos(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) (S48)

𝜂𝜂II sin(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) = 𝜂𝜂MG sin(𝜔𝜔MG𝑇𝑇PTC) ,   𝑎𝑎𝑎𝑎𝑎𝑎 sin(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) 𝜂𝜂II⁄ = 𝜂𝜂MG sin(𝜔𝜔MG𝑇𝑇PTC) 𝜂𝜂MG⁄ (S49)

From equation (S48), we could arrive at a simple solution after some calculation, namely
𝑇𝑇PTC

√𝜇𝜇MG𝜀𝜀MG
=

𝜏𝜏I

√𝜇𝜇I𝜀𝜀I
+

𝜏𝜏II

√𝜇𝜇II𝜀𝜀II
(S50)

which is identical to equation (7) in the main text. Moreover, since we could generally have sin(𝜔𝜔MG𝑇𝑇PTC) =

sin(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) ≠ 0 according to equations (S44,S48), equation (S49) always requires that

𝜂𝜂MG = 𝜂𝜂II (S51)

In other words, if sin(𝜔𝜔I𝜏𝜏I) = 0, 𝑏𝑏𝑏𝑏𝑏𝑏 sin(𝜔𝜔II𝜏𝜏II) ≠ 0, we can obtain determined solutions of 𝜀𝜀MG and 𝜇𝜇MG 

[e.g. equation (8) in the main text] by combing equations (S50-S51), as shown in Fig. S1(a).

Case 2: When both constituents of photonic time crystal satisfy the Fabry-Pérot resonance condition, 

we have

sin(𝜔𝜔I𝜏𝜏I) = sin(𝑚𝑚𝑚𝑚) = 0,   𝑎𝑎𝑎𝑎𝑎𝑎 sin(𝜔𝜔II𝜏𝜏II) = sin(𝑛𝑛𝑛𝑛) = 0 (S52) 

where 𝑚𝑚, 𝑛𝑛 ∈ ℕ . Similarly, when the Maxwell-Garnett effective medium theory holds, we always have 

𝑀𝑀PTC,unit = 𝑀𝑀MG . This way, equations (S47-S50) are also satisfied. However, since we always have 
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sin(𝜔𝜔MG𝑇𝑇PTC) = sin(𝜔𝜔I𝜏𝜏I + 𝜔𝜔II𝜏𝜏II) = sin�(𝑚𝑚 + 𝑛𝑛)𝜋𝜋� ≡ 0 according to equation (S52), equation (S49) is always 

satisfied, and the condition in equation (S51) is thus not mandatory. In other words, if sin(𝜔𝜔I𝜏𝜏I) =

0, 𝑎𝑎𝑎𝑎𝑎𝑎 sin(𝜔𝜔II𝜏𝜏II) = 0, 𝜀𝜀MG and 𝜇𝜇MG are only governed by equation (S50) and thus will have undetermined 

solutions, as shown in Fig. S1(b).

FIG. S1 Relative error in predicting the transmission coefficients of a real photonic time crystal ( 𝑡𝑡�PTC) via 

a homogenized temporal slab ( 𝑡𝑡�MG ). The parameter space of interest is formed by 1 √𝜇𝜇MG𝜀𝜀MG⁄   and 

√𝜇𝜇MG𝜀𝜀MG, which can be easily transformed to 𝜀𝜀MG - 𝜇𝜇MG parameter space. The photonic time crystal has 

an interface number 𝑁𝑁 = 21 , 𝜀𝜀I/𝜀𝜀0 = 1 , 𝜀𝜀II/𝜀𝜀0 = 8.9 , 𝜇𝜇I/𝜇𝜇0 = 𝜇𝜇II/𝜇𝜇0 = 1 , and 𝜔𝜔I𝜏𝜏I = 𝜋𝜋 . (a) A single 

constituent satisfies the Fabry-Pérot resonance condition. For illustration in (a), we set 𝜔𝜔II𝜏𝜏II = 9.15𝜋𝜋. (b) 

Both constituents satisfy the Fabry-Pérot resonance condition. In (b), 𝜔𝜔II𝜏𝜏II = 9𝜋𝜋. The solutions of 𝜀𝜀MG and 

𝜇𝜇MG are governed by equations (S50,S51) and are determined in (a). In contrast, the solutions of 𝜀𝜀MG and 

𝜇𝜇MG are only governed by equation (S50) and are thus undetermined in (b).

S3.2 Spatiotemporal evolution of light scattering in presence of arbitrary surrounding 

media
In this subsection, we show that our intension to set up the surrounding media with homogenized 

permittivity 𝜀𝜀MG  and permeability 𝜇𝜇MG , is to ensure no light reflection at the interface between the 
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surrounding environment and the real photonic time crystal. In this case, we can conveniently check the 

validity or accuracy of the Maxwell-Garnett theory by studying the transmission of light, as shown in Figs. 

S2(a) & S2(b) (namely Figs. 4(e) & 4(f) in the main text). Actually, its validity can also be checked without 

this specific setup of the surrounding media; see the example with the surrounding media being vacuum in 

Figs. S2(c) & S2(d).

FIG. S2 Spatiotemporal evolution of space-time wave packets interacting with photonic time crystals in 

presence of different surrounding media. The setup in (a) & (c) for both the structures and the wave packets 

are the same as those in Fig. 4(e) in the main text, except that the surrounding media in (c) are vacuum. 

Similarly, (b) & (d) have the same set up as those in Fig. 4(f) in the main text, except that the surrounding 

media in (c) are vacuum. The perfectly same spatiotemporal evolution of light scattered by real and 

homogenized structures (e.g. 𝑡𝑡/𝑇𝑇0 ∈ [10,20]) in (a) & (b) or in (c) & (d) indicates the validity of Maxwell-

Garnett theory.
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